Colonization of lettuce rhizosphere and roots by tagged Streptomyces
نویسندگان
چکیده
Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.
منابع مشابه
Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes
Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological co...
متن کاملEffects of season and soil conditions on the mycorrhizal status and colonization of seven grass species. Mahmood Ghorbani*, Jalil Khara and Nasser Abbaspour
In this study seven plant species were collected from the forest of Arasbaran located in the northwest of Iran. Sampling was conducted in May and August and roots were used for calculating vesicular arbuscular mycorrhizal colonization percentage during the same period. Fine roots were separated, washed and put in FAA solution as a fixative. Through the time, root colonization of all plant speci...
متن کاملVisualization of an endophytic Streptomyces species in wheat seed.
Endophytic filamentous actinobacteria were isolated from surface-sterilized roots of wheat plants. Endophytic colonization of germinating wheat seed was examined using one of these endophytes, Streptomyces sp. strain EN27, tagged with the egfp gene. Endophytic colonization was observed from a very early stage of plant development with colonization of the embryo, endosperm, and emerging radicle.
متن کاملDiversity of Fluorescent Pseudomonads in Different Rhizospheres
Root colonization by plant-growth-promoting rhizobacteria (PGPR) can be increased depending on the type of rhizosphere. The aim of the present study was to determine fluorescent Pseudomonad diversity in lettuce, parsley, arugula and chicory. Roots from these rhizospheres were sampled at different properties of small commercial producers in Campinas, state of Sao Paulo, Brazil. In the diversity ...
متن کاملLettuce Cultivar Mediates Both Phyllosphere and Rhizosphere Activity of Escherichia coli O157:H7
Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of ...
متن کامل